$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY (NEW) ASIAdvanced

CH2

Section A

1.

Conducts electricity		Melting temperature		Bonding	
Yes	No	High	Low	Covalent	Ionic
\checkmark		\checkmark		\checkmark	

2. (i) $\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
(ii) Reagent: e.g. sulfuric acid

Observation: white precipitate
3. (i) There is no free rotation about a double bond / the compound has two different groups either side of the double bond
(ii) potassium dichromate(VI) / $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} /$ dichromate $/ \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
(iii) oxidation / redox
(iv) (relative) molecular mass / molar mass
4. (i) $\mathrm{F}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-}$
(ii) (A) fluorine (atom) needs to gain an electron to have a full (outer) shell / fluorine has a high electronegativity

Section B

5.

(a)
(i) atom economy =

$$
\underline{34 \times 100}
$$

$$
(1)=19 \text { (1) }
$$

$$
(2 \times 53.5)+74
$$

(ii) $45 \mathrm{~g} / 100 \mathrm{~cm}^{3} \equiv 450 \mathrm{~g} \mathrm{dm}^{-3}$

$$
\begin{equation*}
\text { concentration }=\frac{450}{111}=4.05(\text { accept } 4.1) \mathrm{mol} \mathrm{dm}^{-3} \text { (1) } \tag{1}
\end{equation*}
$$

(iii) $\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$
(iv) orange-red / brick red
(v) Reagent: silver nitrate / $\mathrm{AgNO}_{3} / \mathrm{Ag}^{+} /$silver ions
Observation: white precipitate
[2]
(vi)

left hand side correct (1)
right hand side correct (1)
[2]
(vii) 111 g of calcium chloride removes $/$ react with $2 \times 18.0 \mathrm{~g}$ water (1)
$\therefore 5.55 \mathrm{~g}$ of calcium chloride mass removes $/$ reacts with $=\frac{5.55 \times 2 \times 18.0}{111}$
$=1.80(\mathrm{~g})$
or in moles:
moles of calcium chloride 0.05 (1) moles of water 0.10 (1)
(viii) a covalent bond where one of the atoms (of the bond) provides both electrons
6.
(a)
(i)
○ Na^{+}
$\bigcirc \mathrm{Cl}^{-}$
(ii) $6: 6$
(iii) $8: 8$
(1)
Cs^{+}ion / cation is much larger than the Cl^{-}ion / anion (1)
(b) (i) Na^{+}ions are attracted to ($\delta-$) oxygen of water molecules (1)
Cl^{-}ions are attracted to ($\delta+$) hydrogen of water molecules (1)
(ii) I Mass of evaporating basin + sodium chloride solution $=140.57 \mathrm{~g}$ Mass of evaporating basin $\quad=72.00 \mathrm{~g}$
$\therefore \quad$ Mass of sodium chloride solution $\quad=68.57 \mathrm{~g}$
Mass of evaporating basin + dry sodium chloride $\quad=90.57 \mathrm{~g}$
Mass of evaporating basin $\quad=72.00 \mathrm{~g}$
$\therefore \quad$ Mass of dry sodium chloride $\quad=18.57 \mathrm{~g}$

II $\quad 50.00 \mathrm{~g}$
III $2 \times 18.57=37.14 \mathrm{~g} / 100 \mathrm{~g}$ water
IV temperature
(c) the outer electron of an atom is an selectron
(d)

$$
\begin{array}{cccc}
4 \mathrm{Na} & +\mathrm{TiCl}_{4} & \rightarrow \mathrm{Ti}+4 \mathrm{NaCl} \\
0 & +4(-1 \times 4) & 0 & 4(+1) 4(-1) \tag{1}
\end{array}
$$

sodium has increased its oxidation number i.e. oxidation
7. (a) (i) Separation of the alkanes by differences in their boiling temperatures
(ii) $\mathrm{C}_{9} \mathrm{H}_{20}$
(iii) Breaking of larger (alkane) molecules into smaller molecules (1) which are more useful / in relative short supply (1)
(iv)

(b) (i) The chlorine molecule is split by UV light (1) by homolytic fission (1) giving two chlorine free radicals

$$
\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \bullet \text { (1) }
$$

In the propagation stage radicals react to produce new radicals

$$
\begin{align*}
& \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \bullet \rightarrow \bullet \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl} \tag{1}\\
& \bullet \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{Cl} \bullet \tag{1}
\end{align*}
$$

In the termination stage two radicals combine giving dichloromethane

$$
\bullet \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl} \bullet \quad \rightarrow \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}
$$

(QWC) organise information clearly and coherently, using specialist vocabulary when appropriate
(ii) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (1) displayed formula is

(accept the displayed formula of 1,1-dichloroethane)
formed by the reaction together of two $\bullet \mathrm{CH}_{2} \mathrm{Cl}$ radicals
8. (a) (i) I the colour changes from red/brown/orange to colourless

II the name of the compound is 1,2,3-tribromobutane /
1,3-dibromobutan-2-ol / 1,2-dibromobutan-3-ol
(ii) I (warm) with (aqueous) sodium hydroxide / $\mathrm{NaOH} /$ alkaline solution

II this would give a white precipitate with aqueous silver nitrate / a source of chloride ions

III the precipitate is not completely soluble in dilute aqueous ammonia / the precipitate is soluble in concentrated aqueous ammonia
(b) (i) The sample would give a (broad) signal at $2500-3550 \mathrm{~cm}^{-1}$ characteristic of the O-H bond (1) accept answers based on $\mathrm{C}-\mathrm{O}$
(ii) Both molecules possess van der Waals forces (1)

Both molecules possess dipole-dipole forces (1) e.g. $\mathrm{C}^{\delta+}-\mathrm{Br}^{\delta-}$ or $\mathrm{C}^{\delta+}-\mathrm{OH}^{\delta-}(1)$
But-2-en-1-ol has hydrogen bonding and the bromo compound does not (1)
Hydrogen bonding is stronger than other intermolecular forces (1) therefore more energy is needed to separate the molecules (1)

(QWC)Ensure that text is legible and that spelling, punctuation and grammar are accurate so that the meaning is clear
 Select and use a form and style of writing appropriate to purpose and to complex subject matter

9. (a) (i) lone pair / bonding pair repulsion is greater than bonding pair / bonding pair repulsion
(ii) nitrogen and hydrogen have different electronegativities (1)
and this results in polarity / unequal electron distribution in the bond (1)
(b) (i) e.g.

equation using displayed formulae
ethane named (1)
(ii) e.g. spectacle frames / teeth brace
(iii) $109^{\circ} 28^{\prime} / 1091^{1 / 2} / ~ 109^{\circ}$
(c) (i) $60-70$ atmospheres
(ii) I e.g. $\mathrm{Al}_{2} \mathrm{O}_{3}$ / porous pot / concentrated sulphuric acid / concentrated phosphoric acid

II elimination / dehydration
(d) (i)

(ii) e.g. refrigerants / dry cleaning / solvents / pesticides / polymers
(iii) Any TWO from:
the $\mathrm{C}-\mathrm{Br}$ bond is the weakest and this has the greatest effect on the ozone layer, seen in CHClF_{2} (0.05) and CBrClF_{2} (10)
increasing numbers of $\mathrm{C}-\mathrm{Cl}$ bonds increase the RODP effect
there is a marked increase in effect when going from 1 chlorine atom in a molecule to 2 chlorine atoms
there is not such a marked change in effect when going from 2 chlorine atoms in a molecule to 3 chlorine atoms
the $\mathrm{C}-\mathrm{F}$ bond is the strongest and does not cause destruction of the ozone layer / has little effect on the ozone layer
$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY (NEW) AS/Advanced

CH2

Section A

1. D
2. D
3. BeCl_{2} 2
(1)
$\mathrm{PCl}_{3} \quad$ pyramidal
CCl_{4} tetrahedral
(1)

4

(1)
forming Na^{+}and O^{2-} ions
(1)
5. Mass in 100 g water $=41 \mathrm{~g}$
(1)

Mass in 50 g water $=20.5 \mathrm{~g}$
(1)
6.

Section B

7. (a) Long chain hydrocarbons have more/stronger intermolecular forces (1)

- van der Waals forces specified

Higher temperatures/more energy required to break these forces (1)
QWC The information is organised clearly and coherently, using specialist vocabulary where appropriate
(b) (i) Alkanes

II

(1)
(1)

2-methylbutane
(1)

2,2-dimethylpropane
(1)
(c) Breaking down of a long chain hydrocarbon into smaller ones

Which are more useful / one of which is an alkene
(1)
8. (a) (i) Chlorofluorocarbon
(ii) Anaesthetics / propellants in aerosols / cleaning solvents / blowing plastics / fire extinguishers
(iii) I A species / atom / molecule with an unpaired electron

II $\quad \mathrm{C}-\mathrm{F}$ bond stronger than $\mathrm{C}-\mathrm{Cl}$ bond
(iv) \quad To neutralise the sodium hydroxide

II Silver nitrate
III Cream precipitate
IV $\mathrm{Ag}^{+}+\mathrm{Br}^{-} \longrightarrow \mathrm{AgBr}$
(b)

9.
(a)

	C	$:$	H	$:$
\%	54.5		9.10	36.4
moles	4.54		9.01	
ratio	1.99		3.95	

O 36.4
(1)
(1)

1
empirical formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
molecular formula $=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
(b) (i) Absorption at about $3300 \mathrm{~cm}^{-1}$ characteristic of OH group
(ii) Propanoic acid

Absorption at around $1700 \mathrm{~cm}^{-1}$ due to $\mathrm{C}=\mathrm{O}$ group
(1)
(1) [2]
(d) Add bromine (water)
turns from brown to colourless
(e)

(1)
(1)
[2]
10. (a) (i) Ability to attract electrons in a covalent bond/a shared electron pair [1]
(ii) Increases
(iii) Increase in number of protons / charge on the nucleus

But same number of electron shells / no increase in shielding (1) Greater power to attract (bonding pair of) electrons (1) [2] ($1^{\text {st }}$ marking point +1 other)
(b) (i) Increases from group I to group IV, large decrease to group V, slight decrease / not much change to group VII (All three trends 2 marks, any two trends 1 mark)
(ii) $930-1650 \mathrm{~K}$
(iii) Mg has more outer electrons

Therefore stronger bonds since it has more delocalised (valence) electrons / stronger metallic bond
(1) [2]
(iv) Electron cloud / molecular size increases down group
(1)

Greater van der Waals / induced dipole forces need to be overcome
(1) $[2]$
(c) Giant molecular structure (or similar)
with strong covalent bonds between atoms
(1) $[2]$

Total [13]
(a) (i) 1 Stream of bubbles / fizzing (1)
White precipitate / cloudiness (1)
Calcium sinks and rises
(any 2 from 3) (1)
II $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O}$
products (1) balancing (1)
III More reactive (1)
Electrons in strontium lost more easily / ionisation energy is less (1) (Must have reason to obtain $1^{\text {st }}$ mark) (More reactive as reactivity increases down group - (1) only)[2][2]

$$
\text { (ii) I No. moles }=\frac{2 \times 20}{1000}=0.04
$$Mass Ca $=0.02 \times 40.1=0.802 \mathrm{~g}$[2]

III Flame test(1)
Flame turns brick-red(1)

$$
\begin{equation*}
\text { II } \quad \text { Moles } \mathrm{Ca}=0.02 \tag{1}
\end{equation*}
$$

Hydrochloric acid + sodium hydroxide / sodium carbonate (1)(c) Calcium chloride conducts electricity when molten / in solution(1)
Calcium conducts electricity when (molten or) solid(1)
When molten, ions in calcium chloride are mobile(1)
Calcium has delocalised electrons in solid state(1)[4]
QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning (1)
Selection of a form and style of writing appropriate to purpose and to complexity of subject matter (1)
$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY
 AS/Advanced

SUMMER 2010

CH2

SECTION A

1. (i)

	$x \times$		or o		$x \times$	
\times		\times				
\times	F	o	O	o	F	\times
	$\times x$		o o		$\times x$	

all outer electrons must be shown.
(ii) $\mathrm{F}_{2} \mathrm{O}+2 \mathrm{Mg} \rightarrow \mathrm{MgO}+\mathrm{MgF}_{2}$
2. $\quad 23.8 \mathrm{~g}$ produced per 100 g of water (1)
$5 \times 23.8 \mathrm{~g}$ produced per 500 g of water $=119(\mathrm{~g})(1)$
3. (i) $\mathrm{Ni} / \mathrm{Pt} / \mathrm{Pd}$
(ii) eg because of restricted/no rotation about the double bond
4. (i) $\mathrm{C}_{5} \mathrm{H}_{12}$
(ii)

or

5. \qquad increases. \qquad decreases.
6. elimination / dehydration

SECTION B

7. (a) (i)

Number of bonding pairs	Number of lone pairs	$\mathrm{F}-\mathrm{S}-\mathrm{F}$	Shape
6	0	$90^{\circ} / 180^{\circ}$	octahedral

one mark for each correct answer
(ii) There is an unequal electron distribution in the bond (1) because fluorine has a higher electronegativity (in this bond) (1) (accept a diagram)
(iii)

Oxidation state of sulfur in SF_{6}	Oxidation state of sulfur in $\mathrm{H}_{2} \mathrm{~S}$	Oxidation state of sulfur in sulfur, S
$(+) 6$	-2	0

The sulfur atom in sulfur hexafluoride has become less positive / more negative \therefore reduced by reaction with hydrogen sulfide
(b)
$\mathrm{Na}^{+} \quad \mathrm{F}^{-} \quad$ correct formula of both ions
$6: 6$
(1)
(1)
(c) (i)
\rightarrow

(ii) diagram shows
correct $\delta^{+} / \delta^{-} \quad$ (1) correct lone pairs
8. (a) (i) $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
(ii) from the graph the mass of pure calcium $=0.104 \mathrm{~g}$ (1)

$$
\begin{equation*}
\% \text { purity of calcium }=\frac{0.104 \times 100}{0.115}=90.4 \tag{2}
\end{equation*}
$$

(iii) The (2) outer electrons to be removed are further from the nucleus in a strontium atom/strontium atom is larger/has an extra shell of electrons (1) There is less electron shielding in the calcium atom / more electron shielding in the strontium atom (1)
(b) addition of a sulfate (ion) / sulfuric acid - white precipitate (1)
addition of an acid-base indicator / pH probe - solution is basic $/ \mathrm{pH}>7$ (1)
(c) strontium
writing / diagram indicates lattice of cations with 'sea' of electrons
electrons able to move (under applied potential), carry charge
graphite
diagram shows hexagonal layer structure (1)
weak intermolecular/Van der Waals forces between layers (1)
(Delocalised) electrons able to move / carry charge (under applied potential) (1)

QWC $\quad \begin{aligned} & \text { ensure that text is legible and that spelling, punctuation and grammar are } \\ & \text { accurate so that the meaning is clear }\end{aligned}$
(d) nanotubes consist of layers / pipelines of graphite hexagons (1)
closed at the end by (pentagons of) carbon atoms / OWTTE (1)
9. (a) (i) Homolytic fission - a process of covalent bond breaking where each atom (of the bond) receives an electron (from the bond) (1)

$$
\begin{equation*}
\mathrm{Cl}-\mathrm{Cl} \rightarrow 2 \mathrm{Cl} \bullet \tag{1}
\end{equation*}
$$

[2]
(ii) Propagation stage - a stage where a (free) radical reacts and another is generated (to carry on the reaction)

$$
\begin{equation*}
\text { eg } \mathrm{Cl} \bullet+\mathrm{CH}_{4} \rightarrow \bullet \mathrm{CH}_{3}+\mathrm{HCl} \text { (1) } \tag{1}
\end{equation*}
$$

(b) (i) The $\mathrm{C}-\mathrm{F}$ bond is stronger than the $\mathrm{C}-\mathrm{Cl}$ bond (1) and is not broken by $\mathbf{U V}$ radiation (1)
(ii) $\mathrm{I} \mathrm{m} / \mathrm{e} 60 \rightarrow \quad \mathrm{M}_{\mathrm{r}} 60$ (1)
$1725 \mathrm{~cm}^{-1} \rightarrow \quad \mathrm{C}=\mathrm{O}$
$2500-3500 \mathrm{~cm}^{-1} \rightarrow \mathrm{O}-\mathrm{H}$ (1)
likely to be ethanoic acid (1) (accept 2-hydroxyethanal)
II Reagent - silver nitrate / AgNO_{3} / silver ions / Ag^{+}(assume aqueous) (1) White precipitate (1)
10. (a) (i) $2 \mathrm{Br}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$
accept stoichiometric equation, e.g. using NaBr (not HBr)
(ii) I An oxidising agent is itself reduced / gains electrons / removes electrons from the other reactant.

II In this reaction the outer electron shell of a chlorine atom is closer to the nucleus than in a bromine atom / chlorine is a smaller atom (1) and therefore the attraction for the electron is greater (1)
(iii) Iodine is a bigger molecule / contains more electrons (or vice versa) (1) therefore intermolecular Van der Waals forces are greater for iodine (1), (more energy is needed to separate iodine molecules, therefore less volatile than bromine)
(unqualified mention of Van der Waals forces (1))
(b) (i) $\quad \mathrm{M}_{\mathrm{r}}$ of calcium bromide $\rightarrow 200 / 199.9$ (1)

Concentration $=\frac{\text { no. of moles }}{\text { volume }}=1200 / 200 \div 1=6\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ (1) [2]
(ii)

Compound	Flame colour(if any)
magnesium bromide	none (1)
calcium bromide	brick red (1)

(c) (i)

(ii) I (Bromine is added) across the double bond

II Any correct carbocation / $\mathrm{H}^{+} / \mathrm{Cl}^{+} / \mathrm{NO}_{2}^{+} /$accept $\mathrm{H}_{2} /$ accept Cl_{2}
III A movement of two electrons/an electron pair/a lone pair
11. (a) 1-Chlorobutane is heated / refluxed (1) with aqueous (1) sodium hydroxide.

Correct formulae and charges (1) curly arrows (1) polarisation (1)
The reaction mechanism is nucleophilic substitution (1)
QWC select and use a form and style of writing appropriate to purpose and to complex subject matter [1] organise information clearly and coherently, using specialist vocabulary when appropriate [1]
(b) (i) (2-)methylpropan-1-ol
(ii) number of moles of compound G $=\frac{0.50 \times 86}{100}=0.43$
mass of compound $G=0.43 \times 74=31.8 / 32 \mathrm{~g}$ (1)
(iii) oxidising agent (potassium) dichromate $/ \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
observation orange to green (solution) (1)
accept correct answers based on potassium manganate(VII)
(c) temperature $300^{\circ} \mathrm{C}$
(1) pressure 60-70 atmospheres
(1)

Total Section B [70]
$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY
 AS/Advanced

JANUARY 2011

CH2

SECTION A

1. (a) Specific health problem e.g. liver disease / cirrhosis / heart failure / stroke [1]
(b) Acidified potassium dichromate(VI) / Acidified potassium manganate(VII) [1]
2. Bones / teeth / coral / shells / muscle contraction (accept skeleton)
3. $B / \mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{NaCl}$ or $\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$
5. (a) $\delta-\mathrm{O}-\mathrm{H} \delta+\quad \delta-\mathrm{C}-\mathrm{H} \delta+\quad \delta+\mathrm{B}-\mathrm{Cl} \delta-\quad \delta+\mathrm{C}=\mathrm{O} \delta-$

2 correct for 1 mark, all four for 2 marks
(b) $\mathrm{O}-\mathrm{H}$
6.

Element	Initial oxidation State	Final oxidation state	Oxidation or reduction
xenon	+2	0	reduction
oxygen	-2	0	oxidation

1 mark for each line completely correct
(If all oxidation states correct without oxidation/reduction indicated then award 1 mark in total.)

SECTION B

7. (a)

Test	Observation	
Flame test	Lilac flame	(1)
Addition of nitric acid followed by aqueous silver nitrate	White precipitate	
Addition of sodium hydroxide solution	White precipitate	

(b) Heat to evaporate some water to form a saturated solution (Do not accept evaporate all water or to dryness) (1)

Allow to cool for crystals to form (1)
Filter off crystals / evaporate at room temperature (1)
(c) (i) 1.25 g
(ii) 169.9 / 170
(iii) Moles carnallite $=1.95 / 169.9=1.15 \times 10^{-2}$ moles

Moles water $=1.25 / 18.02=6.94 \times 10^{-2}$ moles
Both moles for (1)
$\mathrm{X}=6.94 \times 10^{-2} / 1.15 \times 10^{-2}=6 \quad$ (Mark consequentially) (1)
(d) Moles carnallite $=100000 / 169.9=588.6$ moles

This produces 588.6 moles of MgCl_{2}
Mass $\mathrm{MgCl}_{2}=588.6 \times 95.3=56.1 \mathrm{~kg}$ or 56100 g [units must be stated to obtain mark] (1)
8. (a) (i) Compounds A and B have $\mathrm{C}=\mathrm{C}$ double bonds, but compound B does not (1)

There is restricted rotation about the double bond (1)
(ii)

Correct connectivity of bonds (1)
Correct geometrical isomer (1)
(b) (i) Orange to colourless (do not accept 'clear')
(ii) 2,3-dibromobutane
(iii) Cannot form hydrogen bonds / strong intermolecular forces with water molecules
(iv) Sodium or potassium hydroxide (1)

Dissolved in alcohol and heat (1)
(c) (i) 1 mark for arrows in first diagram; 1 mark for dipole on $\mathrm{H}-\mathrm{Br}$ molecule; 1 mark for arrow in second diagram; 1 mark for charges in second stage

(ii) Electrophilic addition
9.
(a) $\quad \mathrm{M}_{\mathrm{r}}\left(\mathrm{CaCO}_{3}\right)=100.1 \quad \mathrm{M}_{\mathrm{r}}(\mathrm{CaO})=56.1 \quad$ both values gives 1 mark

$$
\text { Atom economy }=(56.1 / 100.1) \times 100=56.0 \%
$$

(b) 1 mark showing movement of electrons; 1 mark showing dot and cross of CaO

(c) (i) 1 mark for cubic arrangement; 1 mark for 6 counterions arranged octahedrally around each ion

Accept smaller diagram that shows the octahedral arrangement of ions around counterions
(ii) (CaO and NaCl have 1:1 formulae), CaCl_{2} has 1:2
(d) (i) $\quad 3 \mathrm{Ca}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2}$

1 mark for formula of calcium phosphate; 1 mark for equation
All total of 1 mark for balanced equation with incorrect formula for calcium phosphate
e.g. $2 \mathrm{Ca}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{CaPO}_{4}+3 \mathrm{H}_{2}$
(ii) Calcium sulfate is insoluble (1)

This produces a layer over the surface of the metal preventing reaction (1)
10. (a) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{\circ}$
(b) Fractional distillation (1)

Different products have different boiling points (1)
(c) (i) One intermediate is a $\mathrm{C}_{5} \mathrm{H}_{11}{ }^{\circ}$ radical / a five carbon radical (1) Two of these radicals combine together in a termination reaction (1)
(ii) Peak at $650-800 \mathrm{~cm}^{-1}$ (due to $\mathrm{C}-\mathrm{Cl}$ bond) in chloropentane will be gone (1)
Peak at $2500-3500 \mathrm{~cm}^{-1}$ (due to $\mathrm{O}-\mathrm{H}$) in pentanol will be present (also accept 1000-1300 cm^{-1} for $\mathrm{C}-\mathrm{O}$ bond) (1)
(d) (i) Pentan-1-ol has hydrogen bonding between molecules but 1-chloropentane does not (1) Hydrogen bonding is the strongest intermolecular force (1)
(ii) Both compounds have similar hydrogen bonding between molecules (1) Pentan-1-ol is a larger molecule than propan-1-ol (1) Pentan-1-ol has more stronger van der Waals forces between molecules than propan-1-ol (1)

Any 2 out of 3 [2]
(iii) Propan-1-ol (1)
-OH can hydrogen bond with water (whilst -Cl cannot) (1)
Pentanol has a larger part of the molecule that cannot hydrogen bond / hydrocarbon chain is hydrophobic (1)
(e) $\mathrm{C}-\mathrm{Cl}$ has the largest $\delta+$ on carbon / C-I has smallest $\delta+$ on carbon (1)

If dipole was controlling factor, $\mathrm{C}-\mathrm{Cl}$ would be fastest as nucleophile most attracted to this (1)

Easier to break bonds as go down the group / bonds get weaker down the group (1)

If bond strength was the governing factor we would expect rate to become greater down the group (1)

Dipole is not the controlling factor for rate / Bond strength is the governing factor (1)
[MAX 4]
QWC: legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning.
11. (a) (i) Li
(ii) K
(iii) $\mathrm{Li} / \mathrm{Na} / \mathrm{K} / \mathrm{Mg} / \mathrm{Ca}$
(iv) O
(b) Structures (Max 4 points on structure)

- Graphite: Giant covalent structure OR Hexagonal layers of carbon atoms
- Graphite: Delocalized electrons between the layers
- Aluminium: Lattice of positive metal ions
- Aluminium: (Sea of) delocalized electrons
- Caesium chloride: (Lattice of) anions and cations / giant ionic

Conditions required

- Graphite and Aluminium can conduct as solids
- Caesium chloride must be a liquid/solution to conduct

How material conducts

- Aluminium and Graphite: (Delocalised) electrons move to form a current
- Caesium chloride: Mobile ions carry allow electricity to flow

1 mark for each point giving [MAX 6]

QWC: 2 marks

- selection of a form and style of writing appropriate to purpose and to complexity of subject matter.
- organisation of information clearly and coherently; use of specialist vocabulary where appropriate.
(c) Nanoscale electrical wires / electronic circuitry
(accept miniature/tiny)
$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY
 AS/Advanced

SUMMER 2011

CHEMISTRY - CH2

SECTION A

Q. 1 (a) Calcium carbonate [1]
(b) Sodium carbonate [1]
Q. 2 Metallic (1)
Covalent and van der Waals (1)[2]
Q. $3 \quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ [1]
Q. 4 D [1]
Q. 5 Materials that change their properties in response to a change in conditions / environment / surroundings [1]
Q. 6 (a) Alkene / double bond (1)Alcohol / hydroxyl / hydroxy (1)[2]
(b) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ [1]

SECTION B

Q. 7 (a) Compound that contains no double bonds / single bonds only (Accept contains maximum number of hydrogens)
(b) (i) $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ products (1) balancing (1)
(ii)

(c) Cracking (1)

Heat fraction strongly / heat over a catalyst (1)
Accept equation or description of cracking
(d) Planar molecule with trigonal arrangement about each atom / bond angles roughly 120° (1)

Four (single) covalent $\mathrm{C}-\mathrm{H}$ bonds and one $\mathrm{C}=\mathrm{C}$ double bond (1)
π bond in $\mathrm{C}=\mathrm{C}$ formed by sideways overlap of p orbital (1)
QWC: Information is organised clearly and coherently, using specialist vocabulary where appropriate.
(e) Electrophilic addition (1)

(f) Phosphoric acid
(g) Moles ethanol $=\underline{230}=5$ (1)

Moles glucose $=2.5$ (1)
Mass glucose $=2.5 \times 180=450 \mathrm{~g}$ (1)
Q. 8 (a) $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl}_{2} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{HCl}$ (1)

UV light (1)
any of following for 4 max
$\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl}^{\bullet}$
Free radical substitution / photochlorination (1)
$\mathrm{Cl}^{\bullet}+\mathrm{C}_{4} \mathrm{H}_{10} \longrightarrow{ }^{\bullet} \mathrm{C}_{4} \mathrm{H}_{9}+\mathrm{HCl}$

e.g. $\mathrm{Cl}^{\bullet}+\mathrm{Cl}^{\bullet} \longrightarrow \mathrm{Cl}_{2}$ (1)

QWC: Selection of form and style of writing appropriate to purpose and to complexity of subject matter.
(b) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{NaOH} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{NaCl}$ (1)

Nucleophilic substitution / hydrolysis
(c) Heat with NaOH

Add HNO_{3} then AgNO_{3} (1)
White precipitate seen (1)
(d) Ozone layer depleted / (leads to) increased incidence of skin cancer

Contributes to greenhouse effect / increases global warming
Q. 9 (a) $\mathrm{C}=\mathrm{O}$ absorption at $1650-1750 \mathrm{~cm}^{-1}$

C-O absorption at $1000-1300 \mathrm{~cm}^{-1}$
$\mathrm{O}-\mathrm{H}$ absorption at $2500-3500 \mathrm{~cm}^{-1}$
3 correct peaks labelled
(2 correct peaks labelled 1 mark)
(b) Molecular ion at $\mathrm{m} / \mathrm{z} 60$ shows that M_{r} is 60 (1)

Peak at $\mathrm{m} / \mathrm{z} 15$ shows CH_{3} group / peak at $\mathrm{m} / \mathrm{z} 45$ shows COOH group (1)
(c) (i)

(Accept 1 hydrogen bond)
(ii) (Intermolecular bond formed) when hydrogen attached to a highly electronegative atom (oxygen) (1)
is bonded to an electronegative atom in another molecule (1)
forming very strong dipole - dipole attraction (1)
QWC: Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning
(d) (i) Acidified and heat / reflux
(ii) Colour change from orange to green
(e) Propane would be lower as it cannot form hydrogen bonds / only forms van der Waals forces between molecules (1)

Butan-1-ol would be higher as it (also has hydrogen bonds but) has more van der Waals forces between molecules (1)
Q. 10 (a) (i) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(ii)

Element	Initial Oxidation State	Final Oxidation State
Nitrogen	-3	2
Hydrogen	1	1
Oxygen	0	-2

All three rows correct (2) (1 mark if two rows correct)

Nitrogen oxidised as its oxidation state has increased (1)
(iii) NH_{3} has 3 bonding and 1 non bonding pair of electrons (1)
BF_{3} has 3 bonding pairs only (1)
Electron pairs position themselves as far apart as possible (to minimise repulsion) (1)
(b) (i) A covalent bond where one of the atoms has donated both electrons in the shared pair

charge spread over ion (1)
correct bonding (1)
(iii) Tetrahedral (1)

109½0 (1) (accept 109ㅇ)
(iv) Water is polar / a polar solvent (1)

Anion is attracted to $\mathrm{H}^{\delta+} /$ cation is attracted to $\mathrm{O}^{\delta-}$ (1)
Q. 11 (a) (i) Lilac flame (1)

White solid / white fumes / potassium melts (1)
(ii) $4 \mathrm{~K}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{O}$
(iii) More reactive (1)

Electrons in rubidium lost more easily / ionisation energy is less / explanation e.g. increased sheilding (1)
(Need reason to get first mark but accept more reactive as reactivity increases down group for 1 mark)
(b) (i) No. moles $=\frac{0.098}{23}=0.00426$
(ii) Moles $\mathrm{H}_{2}=0.00213$ (1)

Volume $\mathrm{H}_{2}=0.00213 \times 24=0.0511 \mathrm{dm}^{3}$ (1)
(iii) Moles $\mathrm{NaOH}=0.00426$ (1)

Concentration $\mathrm{NaOH}=\frac{0.00426}{0.200}=0.0213 \mathrm{~mol} \mathrm{dm}^{-3}(1)$
[2]
(c) (i) Do the experiment in a fume cupboard
(ii) $1 \quad 6: 6$

II Electrostatic forces between the oppositely charged ions (1) ionic bonds are / ionic lattice is very strong so large amount of energy needed (1)
$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY
AS/Advanced

JANUARY 2012

GCE Chemistry - CH2

SECTION A

Q. 1 They show a change in properties with a change in conditions (1)

This change in properties is reversible (1)
Q. 2 Equation $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
$\mathrm{pH} \quad$ Accept any value 8 to 14 inclusive / above 7 (1)
Q. 3 4-methylpent-2-ene
Q. 4 (a) Orange to green
(b) (i) $\mathrm{C}-\mathrm{H}$
(ii) C
(iii) 1650 to $1750 \mathrm{~cm}^{-1} \quad \mathrm{C}=\mathrm{O}$
Q. 5

SECTION B

Q. 6 (a) (i)

Any of crosses shown
(ii) $6 \quad$ (not 6,6)
(b) Stir the mixture (before filtering) / heat (1)

Wash the mudstone / residue in the filter paper with water (and add the washings to the filtrate) (1)
(c) (i) $\mathrm{Add} \mathrm{AgNO}_{3} / \mathrm{Ag}^{+}$ions (assume aqueous) (1)

White precipitate (1)
(ii) Add (aqueous) sodium hydroxide (solution) (1) gives (faint) white precipitate with kainite, no reaction with rock salt (1)

OR
Add barium chloride / barium nitrate / barium ions (1) gives white precipitate with kainite, no reaction with rock salt (1)

OR
Add potassium carbonate / carbonate ions (1) gives white precipitate with kainite, no reaction with rock salt (1)
(d) (i) (The gaining of an electron) gives a full / stable (outer) electron shell
(ii) There is less attraction between the nucleus and the (incoming) electron / oxidising power decreases down the group (increases in size is a neutral answer)
(e) (i) The $\mathrm{C}-\mathrm{Cl}$ bond (present in 1,1,1-trichloroethane) is weaker than the C-H bond (in methylcyclohexane) (1) and is broken by UV light / radicals present (that damage the ozone layer) (1)
(ii) Reagent(s) Bromine (aqueous) (1)

Observation red/ brown \rightarrow colourless / decolourised (1)
Q. 7 (a)
(i) $\%$ of solid remaining $=\frac{2.01 \times 100}{3.24}=62.0$ \% decomposition = 87 (1)
(ii) 1 To avoid contamination / ensure that all Ca^{2+} ions came from the solid

II So that all the calcium hydroxide that could dissolve had dissolved / to produce a saturated solution / to ensure homogeneity
(iii) 0.0225

II $\quad 0.0225 \times 74.1=1.67\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$
(iv) Calcium carbonate was removed (by filtration)
(b) Brick red (1)

The 'calcium' will give a flame test colour (1)
(c) $\mathrm{Ca}^{2+}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{CaSO}_{4}$
(d) Find out if the nano-particles have 'side effects' / further research to see if they work
(e) 5000 tonnes of fluorapatite give 8600 tonnes of superphosphate (1)

$$
\text { but yield is } 93 \% \quad \therefore \frac{8600 \times 93}{100}=7998 / 8000 \text { (tonnes) (1) [2] }
$$

(f) The two elements both have 2 electrons in their outer energy level / valence shell can both lose 2 electrons to become $\mathrm{Ra}^{2+} / \mathrm{Ca}^{2+}$ / OWTTE

Q. $8 \quad$ (a) (i) (+) 7

(ii) $\mathrm{M}_{\mathrm{r}} \mathrm{H}_{2} \mathrm{O}_{2}$ is 34.02 / 34 (1)

$$
\text { Concentration }=\frac{76.5 \times 10}{34.02}=22.49 / 22.5\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)
$$

(iii) A covalent bond where the electrons are not shared equally between the atoms / unequal electron density (1) because of differences in electronegativity between the nitrogen and hydrogen atoms (1)
(iv) A (covalent) bond where both electrons come from the same / one atom
(v) (Nitrogen has three bonding pairs and one lone pair of electrons) and these repel each other to take up the position of minimum repulsion
(1) The lone pair / bonding pair repulsion > bonding pair / bonding pair repulsion (1)
(b) (i) It contains an unpaired electron
(ii) $\mathrm{I} \cdot \mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \bullet$

II A radical reacts to produce a new radical (that can continue the process)
(iii) $\mathrm{C}_{7} \mathrm{H}_{16}$
(iv) (Bond fission where a covalent bond breaks) and each atom receives an electron
Q. 9 (a) Hydrogen bonding occurs between (1) oxygen, nitrogen or fluorine (1) of one molecule and hydrogen, which is bonded to oxygen / nitrogen / fluorine of another molecule (1)
Alkanes do not contain an O-H, N-H or F-H bond and cannot therefore hydrogen bond to water molecules (1)

QWC Candidates should have use 'a selection and form of writing appropriate to purpose and to complexity of subject matter'
(b) (i) The (purified) petroleum is separated by heating (1) due to the different boiling temperatures of different fractions (1)

OR the mixture is vaporised (1) and then condensed according to boiling temperatures (1) (as at the oil refinery)
(ii) $\mathrm{CuCl}_{2} \mathrm{Cu}+2 \quad \mathrm{CuCl} \mathrm{Cu} \mathrm{+1}$
(reduction occurs when) the oxidation number becomes less positive
(1)
(c) (i) Same molecular formula but a different structural formula / structure
(ii) Both of the carbon atoms of the double bond have different atoms / groups bonded to them (1)
There is no free rotation about the double bond (1)
(iii) $\quad \mathrm{M}_{\mathrm{r}}$ of compound \mathbf{A} is $146.3 / 146$ (1)

Cost per mole is $146.3 \times 48 \times 100=£ 96.20$ (1)
100×73
(Accept $£ 96.00$ per mole if M_{r} of 146 has been used)
Q. 10 (a) (i)

curly arrows (1)
charges (1)
[2]
(ii) Nucleophile hydroxide ion / OH^{-}/ water (1)

Substitution the replacement of one functional group by another (1)
(iii)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{O}$
(accept Na^{+}and Br^{-}in place of NaBr)
(b) $\quad M_{r}=88(1)$
$\mathrm{Mr}_{\mathrm{r}} \mathrm{R}=88-(45)=$
$\therefore \mathrm{R}$ (an alkyl group) is $\mathrm{C}_{3} \mathrm{H}_{7}$
thus acid is

or

(1) [3]
(c) In graphite each carbon atom is bonded to three other carbon atoms (1)
(using covalent bonding)
The other (outer) electron for each carbon atom is delocalised (1), throughout the structure and is able to move (1), conducting electricity In iodine the two iodine atoms are bonded together (using covalent bonding) and there are no free electrons to carry the charge (1)
Mention of covalent bonding for either element (1)
QWC Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning (1)
Organisation of information clearly and coherently; use of specialist vocabulary where appropriate (1)

$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY
AS/Advanced

SUMMER 2012

CH2

SECTION A

Q. 1 (a) $\mathrm{C}_{19} \mathrm{H}_{40}$
(b) $\mathrm{C}_{19} \mathrm{H}_{40} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{11} \mathrm{H}_{22} \quad$ - allow ecf
Q. 2 2-chlorobutane
Q. 3

Q. 4 any number in range 1 to 6
Q. 5 (a) maximum mass $=44-45(\mathrm{~g})$
(b) (less solute would form as a solid) because more will remain in the solution
Q. 6 (a) iodine force is Van der Waals/ induced dipole-induced dipole (1)
diamond force is covalent bond/ description of attractive forces in a covalent bond (1)
(b) diamond would have a higher sublimation temperature because it has stronger forces/ forces are harder to break

SECTION B

Q. 7 (a) (i) one σ bond/ description of σ bond/ diagram to show overlap of s orbitals (1)
one π bond/ description of π bond/ diagram to show sideways overlap of p orbitals (1)
(ii) joining of many/lots of (small) units or many alkenes / molecules to make a large/long unit/ molecule
(iii)

(iv) $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Cl}$
(b) (i) BF_{3} is planar triangular/ trigonal planar (1)
NH_{3} is pyramidal/ trigonal pyramid (1)
(ii) BF_{3} has 3 bond pairs (1)
NH_{3} has 3 bond pairs and 1 lone pair (1)

QWC the information is organised clearly and coherently, using specialist vocabulary where appropriate
(c) (i) co-ordinate/ dative covalent/ dative

- no credit for 'covalent'
(ii) $1091_{2}{ }^{\circ}$ (accept any in range $109^{\circ}-110^{\circ}$)
(iii) 4 bond pairs/ bonds (around B)
- no credit for 'tetrahedral'
Q. $8 \quad$ (a) (i) $\quad \% \mathrm{H}=14.3$ (1)

$$
\begin{align*}
& \mathrm{C}: \mathrm{H}=\frac{85.7}{12.0}: \frac{14.3}{1.01}=7.14: 14.16(1) \\
& \text { empirical formula }=\mathrm{CH}_{2}(1) \tag{3}
\end{align*}
$$

(ii) $\quad M_{r}=42 /$ largest fragment has mass 42 (1)
$\left(\mathrm{CH}_{2}=14\right)$ therefore molecular formula $=\mathrm{C}_{3} \mathrm{H}_{6}(1)$
(iii) CH_{3} is present
(b) 1 mark for each

Total [9]
Q. 9 (a) apparatus in which reaction can occur, e.g. flask/ test tube, and delivery/ rubber tube (1)
apparatus in which to measure volume of gas, e.g. over water with measuring cylinder/ gas syringe (1)
(b) (i) fewer moles of barium used / barium has a higher A_{r}
(ii) reaction faster/ more vigorous/ less cloudy solution formed with barium (1)
because ionisation energy of barium is less/ electrons lost more easily from barium/ barium is lower in the group/ barium hydroxide is more soluble (1)
(c) flame test (1) brick red for calcium and (apple) green for barium (1)

OR

add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution
white precipitate with Ba^{2+}, less precipitate/ no precipitate with Ca^{2+} (1)
(d) electrons correct - oxide ion clearly shows that 2 electrons originated from calcium atom (1)
charges correct (1)
(e) (i) add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution (1)
filter (1)
$\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}(1)$

- state symbols ignored
[3]
(ii) moles $\mathrm{Ba}=2 / 137$ (1)

$$
\begin{equation*}
\text { mass } \mathrm{BaSO}_{4}=\frac{2 \times 233.1}{137}=3.4(\mathrm{~g})(1) \tag{2}
\end{equation*}
$$

Q. 10 (a) both contain metallic bonds/ positive ions and delocalised electrons labelled on diagram (1)
those in magnesium are stronger/ harder to break/ need more energy to break (1)
because 2 electrons are involved in delocalisation/ attraction to the positive ions (1)
(b) reaction is hydrolysis of halogenoalkane/ nucleophilic substitution of halogenoalkane (1)
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{X}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{X}^{-} \quad \mathrm{X}$ can be Cl or $\mathrm{Br}(1)$
(white precipitate is) silver chloride and (cream precipitate is) silver bromide (1)
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgX}(\mathrm{s})$ or $\mathrm{AgNO}_{3}+\mathrm{X}^{-} \rightarrow \mathrm{AgX}+\mathrm{NO}_{3}{ }^{-}$

- state symbols ignored

QWC selection of form and style of writing appropriate to purpose and to complexity of subject matter
(c) caesium ions are bigger than sodium ions - accept 'atoms' (1)
co-ordination number $6: 6$ for sodium and $8: 8$ for caesium (1)
both cubic (1)
(d) reaction is electrophilic addition (1)
two possible products are 1-bromopropane and 2-bromopropane (1)
more 2-bromopropane formed (1)
because of greater stability of intermediate positive ion/ 2° carbocation

QWC legibility of text; accuracy of spelling, grammar and punctuation, clarity of meaning
Q. 11 (a) diagram completed with at least 1 water molecule and indication of interaction between O on one molecule and H on the other (1)
interaction between δ^{+}on H and lone pair on O (1)
interaction labelled hydrogen bond (1)
(b) (i) reduction/ redox - accept 'oxidation'
(ii) I OH

II $\quad \mathrm{OH}$ is also present in water
(c) (i)

(ii) peak at 1650-1750 (1)
due to $\mathrm{C}=\mathrm{O}$ (1)
Q. 12 (a) incomplete p sub-shell/ outer electron configuration $s^{2} p^{5} /$ outer electrons in p subshell/ outer electrons in p orbitals/ valence electrons in p subshell/ valence electrons in p orbital
(b) (i) gaining one electron completes shell/ gives $\mathrm{p}^{6 /}$ takes an electron from another species/gains an electron

- do not accept 'attracts an electron'
(ii) fluorine because it is the smallest/ has the greatest electron affinity/ has the least shielding/ has the greatest effective nuclear charge/ oxidising power decreases as the group is descended
(c) oxidation state is $(+) 5 / \mathrm{V}$ - do not accept '5+'
(d) (i) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{\bullet} \quad$ - ignore hf
(ii) $\mathrm{CH}_{4}+\mathrm{Cl}^{\bullet} \rightarrow \mathrm{HCl}+{ }^{\bullet} \mathrm{CH}_{3}(1)$

$$
\begin{equation*}
{ }^{\bullet} \mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{\bullet} \text { (1) } \tag{2}
\end{equation*}
$$

(e) products: ${ }^{\bullet} \mathrm{CFH}_{2}$ and $\mathrm{Cl}^{\bullet}(1)$

C-CI bond is the weakest/ most easily broken (1)

GCE MARKING SCHEME

CHEMISTRY ASIAdvanced

JANUARY 2013

GCE CHEMISTRY - CH2 JANUARY 2013 MARK SCHEME

SECTION A

Q. 1 Calcium - Bones, teeth, muscle contraction. Magnesium - chlorophyll, activation of ATP. (Both for 1 mark)
Q. 2 4,4-dimethylpentan-1-ol (1)
Q. 3 (a) Ability of atom to attract electrons in a covalent bond towards itself.
(b) $\delta-\mathrm{F}-\mathrm{Cl} \delta+\quad \delta+\mathrm{At}-\mathrm{Cl} \delta$ - Both needed for mark
Q. $4 \mathrm{CH}_{2}\left(\right.$ Accept $\left.\mathrm{H}_{2} \mathrm{C}\right)$
Q. 5 (a) C
[1]
(b) B
Q. 6 Both O_{2} and O_{3} have oxidation states of zero (1) No change in oxidation state (1)
[2]
Q. 7 Reversible change in properties when conditions change.

SECTION B

Q. 8
(a) (i) $\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4} \quad$ (state symbols not required)
(ii) white precipitate
(b) (i) apple-green / yellow-green (no credit for 'green')
(ii) Reagents - silver nitrate (1)

Observation - white precipitate (1)
Must have correct reagent to get observation
[1]
[2]
(c) Mass produced by cooling $1 \mathrm{dm}^{3}=358-312=46 \mathrm{~g}$ (1)

Mass produced by $200 \mathrm{~cm}^{3}=46 \times 200 \div 1000=9.2 \mathrm{~g}(1)$
(d) M_{r} of anhydrous $\mathrm{BaCl}_{2}=208$ (1)

Water content $=36$ so $x=2$ (1)
(e) (i) $\mathrm{BaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(ii) I. Moles $=50 \times 0.50 \div 1000$ (1) $=0.025$ moles (1)
II. Filtration
III. Moles $\mathrm{BaCl}_{2}=$ moles $\mathrm{HCl} \div 2=0.0125 \mathrm{~mol}$ (1)

Mass hydrated $\mathrm{BaCl}_{2}=0.0125 \times 244=3.05 \mathrm{~g}(1)$
Q. 9 (a) (i) ultraviolet / sunlight
(ii) A species with an unpaired electron.
(b) $\mathrm{CH}_{4}+\mathrm{Cl} \bullet \rightarrow \mathrm{CH}_{3} \bullet+\mathrm{HCl}$ (1)
$\mathrm{CH}_{3} \bullet+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \bullet$ (1)
[2]
(c) (i) Two $\mathrm{CH}_{3} \bullet$ radicals combine (in a termination reaction).
(ii) $24.3 \div 12=2.025$ for C $\quad 4.1 \div 1.01=4.059 \mathrm{H} \quad 71.6 \div 35.5=2.017 \mathrm{Cl}$ (1) $\mathrm{CH}_{2} \mathrm{Cl}$ (1)
(d) (i) Nucleophilic substitution
(ii) Methanol has hydrogen bonding between molecules (1) Chloromethane has van der Waals forces / dipole-dipole forces between molecules (1) Hydrogen bonding is stronger than Van der Waals/dipole-dipole (1)
(iii) Acidified potassium dichromate / acidified potassium manganate(VII) (1) Heat /warm (1) (Need correct reagent to gain heat mark)
(e) Compounds \mathbf{B} and \mathbf{C} are stable enough to reach the ozone layer OR Compound \mathbf{D} would not reach the ozone layer as it would decompose in the lower atmosphere. (1)
(The C-Cl forms) Cl• which will decompose the ozone. (1)
Compound \mathbf{A} does not contain chlorine, (so it cannot form $\mathrm{Cl} \bullet$) / Compound A has a lower RODP (1)
Q. 10 (a) - BCl_{3} is trigonal planar or clear diagram.

- NCl_{3} is pyramidal or clear diagram.
- BCl_{3} has 3 bonded pairs
- NCl_{3} has 3 bonded pairs
- NCl_{3} has a lone pair
- BCl_{3} has no lone pair
- Electron pairs repel to be as far from each other as possible / position of minimum repulsion.
- Lone pairs repel more than bonded pairs.

First two points and any other 4 for (1) each up to 6 max

- QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter.[1]
-
- QWC: legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning.[1]
(b)

accept crosses and dots exchanged (1)
Electron deficient: outer shell of boron has less than 8 electrons / is not full.(1)
(c) NH_{3} can form hydrogen bonds with water molecules (so it dissolves) (1)
NCl_{3} cannot form hydrogen bonding. (1)
(d) - Covalent has a pair of shared electrons one from each atom (1)
- Coordinate has a pair of shared electrons both electrons from same atom (1)
Q. 11 (a) (i)

Clear 8 coordination number (1)
Labels of both Cl^{-}and Cs^{+}(either way round) (1)
(ii) Cs^{+}ion larger than Na^{+}so can have a larger coordination number.
(b) (i) Any three from the following for (1) each up to 3 max - can gain these from labelled diagram

- Layers of carbon atoms.
- Hexagons of carbon atoms / each carbon bonded to three others.
- Weak forces between layers.
- Delocalised electrons above and below plane.

QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate.
(ii) Delocalised electrons in graphite can move to carry a current (1) Diamond has no delocalised electrons (1)
(iii) Van der Waals forces between molecules need to be broken to form iodine gas (1)

Covalent bonds need to be broken to form a gas from diamond/graphite (1)
Van der Waals forces are much weaker than covalent bonds (1)
Q. 12 (a) (i) Molecules with different numbers of carbon atoms have different boiling points.
(ii) Any suitable reaction, e.g. $\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{C}_{6} \mathrm{H}_{14}$
(b) (i) Turns from orange to colourless (no credit for 'red')
(ii) (1) for arrows in first diagram; (1) for arrow in second diagram; (1) for all charges.

(iii) Ethanol OR Alcohol solution / Heat - both required
(c) (i) Restricted rotation about double bond in but-2-ene but not butane (1)
2 groups attached to each carbon of the double bond are different in but-2ene but in propene one carbon has the same two groups attached (1)
[2]
(ii)

Accept any valid representation
(d) (i) Steam, phosphoric acid catalyst, (1) $300^{\circ} \mathrm{C}$, 70 atm pressure (1)
(ii) Butan-2-ol will have IR absorptions at $2500-3550 \mathrm{~cm}^{-1} / 1000-1300 \mathrm{~cm}^{-1}$ and butene will not OR
But-2-ene will have an IR absorption at 1620-1720 and butan-2-ol will not [1]
$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY
AS/Advanced

SUMMER 2013

GCE CHEMISTRY - CH2

SUMMER 2013 MARK SCHEME

Section A

Q. 1 C [1]
Q. 2 B [1]
Q. 3 (a) Calcium chloride [1]
(b) Magnesium carbonate [1]
(c) Sodium sulfate [1]
Q. 4

Species	$\mathrm{Cl} \bullet$	NH_{3}
Classification	Radical	Nucleophile

Q. 5 e.g. wound dressing/sterilising sprays/deodorant socks/ refrigerator surfaces/anti-perspirants [1]
Q. 6 Potassium and chlorine (1)
They have the largest electronegativity difference (1)[2]

Section B

Q. 7 (a) (i)

(ii) Nickel / platinum / palladium
(iii) Potassium / sodium hydroxide (1) in ethanol and heat (1)
(iv) Elimination
(b) (i)

(ii) M_{r} poly(propene) unit = 42 (1)

Number of units $=\frac{1.05 \times 10^{6}}{42}=25000$ (1)
(c) (i) Percentage hydrogen $=4.6 \%$

C	H	Br
$\frac{22.0}{12}$	$\frac{4.6}{1.01}$	$\frac{73.4}{79.9}$
1.83	4.55	0.92
2	5	1

Formula $=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ (1)
(ii) $\quad M_{r}$ of compound / number of atoms of any element in compound
Q. 8 (a) e.g. damages liver/ damages pancreas/causes cancer/causes skin disorders/ short-term effects (1)
e.g. more traffic accidents/violent behaviour/criminal behaviour (1)
(b) (i) Nucleophilic substitution / hydrolysis (1)

Reactants:
Intermediate (1)
Polarisation (1) (accept curly arrow to show curly arrow (1) $\quad \mathrm{C}-\mathrm{Cl}$ breaking instead of intermediate)
(Incorrect starting material or product maximum 2 marks from 3 for mechanism)
(ii) Peak at $650-800 \mathrm{~cm}^{-1}$ due to $\mathrm{C}-\mathrm{Cl}$ bond will be gone

Peak at $2500-3500 \mathrm{~cm}^{-1}$ due to $\mathrm{O}-\mathrm{H}$ bond /
$1000-1300 \mathrm{~cm}^{-1}$ due to $\mathrm{C}-\mathrm{O}$ bond will be present (1)
(c) (i)

(ii) Structural / positional / chain
(iii) Colour change from orange to green
(iv) Concentrated sulfuric acid / aluminium oxide (1)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2}+\mathrm{H}_{2} \mathrm{O}$ (1)
(d) (i) $\mathrm{C}-\mathrm{F}$ bond stronger than $\mathrm{C}-\mathrm{Cl}$ bond (1)
$\mathrm{C}-\mathrm{Cl}$ bond breaks (in stratosphere) forming $\mathrm{Cl} \bullet$ which reacts with ozone (1)
(ii) Some CFCs still being used / CFCs take a very long time to reach the ozone layer / other substances deplete the ozone layer
Q. 9 (a) A mixture of (many) hydrocarbons / alkanes
(b) $\quad \mathrm{C}_{4} \mathrm{H}_{10}+6 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$
(c) $109 \frac{1}{2}{ }^{\circ}$
(d) $\mathrm{H}_{2} \mathrm{O}$ has 2 bonding and 2 lone pair of electrons (1)
CH_{4} has 4 bonding pairs only (1)
Repulsion between lone pairs and bond pairs is greater than between bond pairs and bond pairs (1)

QWC The information is organised clearly and coherently, using specialist vocabulary where appropriate
(e) (i) Butane is higher because it has more van der Waals' forces between molecules
(ii) Regular array of metal ions surrounded by a 'sea' of delocalised valence electrons (1)

Strong attraction between the positive ions and the delocalised electrons (1) (Can be obtained from labelled diagrams)

Malleable because when a force is applied the layer of metal ions slide over each other forming a new shape (1)

Conduct electricity since under a potential difference the delocalised electrons flow / the delocalised electrons flow towards the positive potential

QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning
Q. 10 (a) (i) Chlorine - gas
lodine - solid
(ii) Chlorine - brown/orange solution (1)
lodine - no change / no reaction (1)
$\mathrm{Cl}_{2}+2 \mathrm{KBr} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{KCl}(1)$
(Accept ionic equation)
(b) Oxygen loses electrons therefore oxidised / oxidation state changes from -2 to 0 therefore is oxidised (1)

Chlorine gains electrons therefore reduced / oxidation state changes from 0 to -1 therefore is reduced (1)
(c) (i) Boiling temperatures increase as relative molecular mass increases / number of electrons increases / down group (1)

HF has a higher boiling point than expected (1)
(ii) Group 7 hydrides contain more dipole-dipole forces as group descended
but HF contains hydrogen bonding between molecules (1)
Hydrogen bonds are stronger therefore HF's boiling temperature is greater / need more energy to break (1)

QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter

QWC [1]
(iii) HCl more polar than SiH_{4} therefore intermolecular forces are stronger / dipole greater in $\mathrm{HCl} / \mathrm{Cl}$ more electronegative than Si
Q. 11 (a) (i) $2 \mathrm{Ca}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CaO}$
(ii)

forming Ca^{2+} and O^{2-} ions (1)
(b) (i) $\mathrm{Ca}(\mathrm{OH})_{2}$
(ii) $8-14$
(c) $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
(d) (i) Magnesium disappears / gets smaller (1)

Effervescence / bubbles (of hydrogen) (1)
Heat given off (1)
[2]
(Accept any 2 points)
(ii) Moles $\mathrm{Mg}=\frac{0.503}{24.3}=0.0207$

Moles $\mathrm{HCl}=0.0414$ (1)
Volume $\mathrm{HCl}=\underline{0.0414}=0.0259 \mathrm{dm}^{3}$ (1)
(iii) Volume $\mathrm{H}_{2}=0.0207 \times 24=0.497 \mathrm{dm}^{3}$
(iv) Add aqueous silver nitrate (1)

White precipitate forms (1)
(e) Less reactive (1)

Electrons in beryllium more difficult to lose / ionisation energy is higher (1)
(Need reason to get first mark but accept less reactive as reactivity increases down group / outer electron has less shielding etc. for 1 mark)
$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

CH2

Section A

Q. $1 \quad \mathrm{C}$
Q. 2 (a) $\mathrm{Cl}^{\text {º }}-\mathrm{F}^{\delta-}$

Electronegativity decreases down the group / fluorine is more electronegative (than chlorine) / chlorine is less electronegative (than fluorine)
(b)
Q. 3 It has a full / stable (outer) electron shell
Q. 4 (a) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Br}_{2}$
(b) Elimination
Q. 5 Temperature 200-300 (accept 470-570K)

Pressure 60-70 (accept 6000-7000 kPa)
Q. 6 Hex-2-ene (ignore references to cis/trans/ E / Z)
Q. 7 (a) A process of bond breaking where the two electrons (of the covalent bond) go to one of the two atoms in the bond
(b) $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$and $\mathrm{Cl}^{-} \quad\left(\right.$ accept $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{-}$and $\left.\mathrm{Cl}^{+}\right)$

Section B

Q. 8 (a) $\quad \ln \mathrm{SO}_{2}$ the oxidation number of sulfur is +4

In $\mathrm{SO}_{2} \mathrm{~F}_{2}$ the oxidation number of sulfur is +6 (1)
Increase in (positive) oxidation number is oxidation (1)
(b) The electrons in the bonds between sulfur and fluorine and sulfur and oxygen take up the position of minimum repulsion / maximum separation [1]
(c) (i) A lone pair donor / a species that seeks out a relatively positive site
(ii) \quad eg $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-} / \mathrm{Cl}^{-}$(or other halogen) $/ \mathrm{CN}^{-} /$ correct formula of an amine
(iii) A shift of two electrons
(d) $\mathrm{SO}_{2} \mathrm{~F}_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaSO}_{4}+\mathrm{CaF}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
[(1) for correct formulae, (1) for balancing if formulae correct]
(e) (i) UV radiation (1) is able to break the $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{Br}$ bonds (1) giving radicals (1) that attack / breakdown the ozone layer
(ii) The S—F bond in sulfuryl fluoride is too strong to be broken by UV radiation
Q. 9 (a) (i) $165 \pm 5^{\circ} \mathrm{C}$
(ii) As the number of carbon atoms in the acids increase the boiling temperature increases (1)
This is due to an increase in induced dipole-induced dipole /
Van der Waals forces (1) between molecules (1)
(iii) As the molecules increase in size the relative importance of the - COOH group decreases (1)

There is therefore less of a tendency to hydrogen bond with water (becoming less soluble) (1)
(b) (i) Acidified (potassium) dichromate (accept $\mathrm{H}^{+}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$) /

Acidified (potassium) manganate(VII) (accept $\mathrm{H}^{+}, \mathrm{MnO}_{4}{ }^{-}$)
(ii)

(iii) I 0.050

II 0.025
III $\quad 0.025 \times 186=4.65(\mathrm{~g})$
(iv) Any 2 of the following:

[2]
(c) (i) $\frac{49.3}{12}=4.11 \frac{43.8}{16}=2.74$ (1) Ratio of $\mathrm{C}: \mathrm{O}$ is 3:2 (1)
[2]
(ii) There are four oxygen atoms per molecule $\therefore 6$ carbon atoms (and 4 oxygen atoms)
$\therefore \mathrm{n}=6-2$ in the acid groups $\therefore \mathrm{n}=4$
Q. 10
(a)
(i) Number of moles of $\mathrm{HCl}=\frac{80 \times 0.20}{1000}=0.016$

Number of moles of calcium needed $=0.008$

Number of moles of calcium actually used $=\frac{0.40}{40}=\sim 0.010$
(\therefore calcium is present in excess)
[Calculation could be carried out in grams]
(ii) gas bubbles / effervescence / some calcium 'dissolves' / colourless solution produced
(b) Mass of E in solution at $0^{\circ} \mathrm{C}=0.13 \times 2=0.26 \mathrm{~g}$
\therefore Quantity precipitated $=1.50-0.26=1.24 \mathrm{~g}$ (1)
(c) (i) Brick red / orange-red
(ii) Cream precipitate (accept off-white precipitate)
(iii) $\mathrm{Ag}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{AgBr}$
(iv) Red / brown solution
(v) Calcium bromide is an ionic compound (1) and contains Ca^{2+} and Br^{-}ions (1)
Chlorine reacts with the bromide ions in a redox / displacement reaction (1)
Chlorine is a more powerful oxidising agent / has a greater affinity for electrons than bromine (1)
$2 \mathrm{Br}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$(1)

QWC: ensure that text is legible and that spelling, punctuation and grammar are accurate so that the meaning is clear
Q. 11 (a) lodine contains weak van der Waals forces /
bonds between each molecule (1)
Less energy is needed to overcome these weaker forces (1)*
Diamond contains strong covalent bonds between each atom (1)
and more energy is needed to overcome these 'bonds' (1) *

* alternative marks

Neither iodine nor diamond contain free / delocalised electrons to carry the charge (necessary for them to conduct electricity) (1)

QWC: organise information clearly and coherently, using specialist vocabulary when appropriate
(b) K^{+}and I^{-}correctly given (1) and in their correct places on the diagram (1)
(c) An excess / stoichiometric / 0.05 mol (1) of potassium sulfate (aq) is added to the barium chloride solution
Mixture is stirred (1) * and then filtered (1)
Precipitated barium sulfate is then washed with distilled water (1) and dried (1) *

* alternative marks

QWC: Select and use a form and style of writing appropriate to purpose and to complex subject matter
Q. 12 (a) (i) Petroleum is heated/evaporated (1)

Fractions condense at different temperatures / separated into fractions with different boiling temperatures (1)
[2]
(ii) $\mathrm{C}_{5} \mathrm{H}_{12} \quad$ (1)

Branched chain therefore

(1)
[2]
(b) (i) It enables more useful compounds to be made from the compound
(ii) $\mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{CH}_{4}+\mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{C}_{4} \mathrm{H}_{10}$
(c) (i) UV light
(ii) A step during which a radical reacts and another one is formed
(iii) $\mathrm{Cl} \cdot+\mathrm{CH}_{4} \rightarrow{ }^{\circ} \mathrm{CH}_{3}+\mathrm{HCl}$
[or $\cdot \mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot$]
(d) (i)

(ii) Aqueous sodium hydroxide
(iii) $\mathrm{Pt} / \mathrm{N} / \mathrm{Pd}$
(iv) Compound \mathbf{E} does not contain an $\mathrm{O}-\mathrm{H}$ bond (1)

This is present in Compound \mathbf{D} at a frequency of $2500-3550 \mathrm{~cm}^{-1}$ (1)

$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY
AS/Advanced

SUMMER 2012

CH2

SECTION A

Q. 1 (a) $\mathrm{C}_{19} \mathrm{H}_{40}$
(b) $\mathrm{C}_{19} \mathrm{H}_{40} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{11} \mathrm{H}_{22} \quad$ - allow ecf
Q. 2 2-chlorobutane
Q. 3

Q. 4 any number in range 1 to 6
Q. 5 (a) maximum mass $=44-45(\mathrm{~g})$
(b) (less solute would form as a solid) because more will remain in the solution
Q. 6 (a) iodine force is Van der Waals/ induced dipole-induced dipole (1)
diamond force is covalent bond/ description of attractive forces in a covalent bond (1)
(b) diamond would have a higher sublimation temperature because it has stronger forces/ forces are harder to break

SECTION B

Q. 7 (a) (i) one σ bond/ description of σ bond/ diagram to show overlap of s orbitals (1)
one π bond/ description of π bond/ diagram to show sideways overlap of p orbitals (1)
(ii) joining of many/lots of (small) units or many alkenes / molecules to make a large/long unit/ molecule
(iii)

(iv) $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Cl}$
(b) (i) BF_{3} is planar triangular/ trigonal planar (1)
NH_{3} is pyramidal/ trigonal pyramid (1)
(ii) BF_{3} has 3 bond pairs (1)
NH_{3} has 3 bond pairs and 1 lone pair (1)

QWC the information is organised clearly and coherently, using specialist vocabulary where appropriate
(c) (i) co-ordinate/ dative covalent/ dative

- no credit for 'covalent'
(ii) $1091_{2}{ }^{\circ}$ (accept any in range $109^{\circ}-110^{\circ}$)
(iii) 4 bond pairs/ bonds (around B)
- no credit for 'tetrahedral'
Q. $8 \quad$ (a) (i) $\quad \% \mathrm{H}=14.3$ (1)

$$
\begin{align*}
& \mathrm{C}: \mathrm{H}=\frac{85.7}{12.0}: \frac{14.3}{1.01}=7.14: 14.16(1) \\
& \text { empirical formula }=\mathrm{CH}_{2}(1) \tag{3}
\end{align*}
$$

(ii) $\quad M_{r}=42 /$ largest fragment has mass 42 (1)
$\left(\mathrm{CH}_{2}=14\right)$ therefore molecular formula $=\mathrm{C}_{3} \mathrm{H}_{6}(1)$
(iii) CH_{3} is present
(b) 1 mark for each

Total [9]
Q. 9 (a) apparatus in which reaction can occur, e.g. flask/ test tube, and delivery/ rubber tube (1)
apparatus in which to measure volume of gas, e.g. over water with measuring cylinder/ gas syringe (1)
(b) (i) fewer moles of barium used / barium has a higher A_{r}
(ii) reaction faster/ more vigorous/ less cloudy solution formed with barium (1)
because ionisation energy of barium is less/ electrons lost more easily from barium/ barium is lower in the group/ barium hydroxide is more soluble (1)
(c) flame test (1) brick red for calcium and (apple) green for barium (1)

OR

add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution
white precipitate with Ba^{2+}, less precipitate/ no precipitate with Ca^{2+} (1)
(d) electrons correct - oxide ion clearly shows that 2 electrons originated from calcium atom (1)
charges correct (1)
(e) (i) add sulfuric acid/ sodium sulfate solution/ potassium sulfate solution (1)
filter (1)
$\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}(1)$

- state symbols ignored
[3]
(ii) moles $\mathrm{Ba}=2 / 137$ (1)

$$
\begin{equation*}
\text { mass } \mathrm{BaSO}_{4}=\frac{2 \times 233.1}{137}=3.4(\mathrm{~g})(1) \tag{2}
\end{equation*}
$$

Q. 10 (a) both contain metallic bonds/ positive ions and delocalised electrons labelled on diagram (1)
those in magnesium are stronger/ harder to break/ need more energy to break (1)
because 2 electrons are involved in delocalisation/ attraction to the positive ions (1)
(b) reaction is hydrolysis of halogenoalkane/ nucleophilic substitution of halogenoalkane (1)
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{X}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{X}^{-} \quad \mathrm{X}$ can be Cl or $\mathrm{Br}(1)$
(white precipitate is) silver chloride and (cream precipitate is) silver bromide (1)
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgX}(\mathrm{s})$ or $\mathrm{AgNO}_{3}+\mathrm{X}^{-} \rightarrow \mathrm{AgX}+\mathrm{NO}_{3}{ }^{-}$

- state symbols ignored

QWC selection of form and style of writing appropriate to purpose and to complexity of subject matter
(c) caesium ions are bigger than sodium ions - accept 'atoms' (1)
co-ordination number $6: 6$ for sodium and $8: 8$ for caesium (1)
both cubic (1)
(d) reaction is electrophilic addition (1)
two possible products are 1-bromopropane and 2-bromopropane (1)
more 2-bromopropane formed (1)
because of greater stability of intermediate positive ion/ 2° carbocation

QWC legibility of text; accuracy of spelling, grammar and punctuation, clarity of meaning
Q. 11 (a) diagram completed with at least 1 water molecule and indication of interaction between O on one molecule and H on the other (1)
interaction between δ^{+}on H and lone pair on O (1)
interaction labelled hydrogen bond (1)
(b) (i) reduction/ redox - accept 'oxidation'
(ii) I OH

II $\quad \mathrm{OH}$ is also present in water
(c) (i)

(ii) peak at 1650-1750 (1)
due to $\mathrm{C}=\mathrm{O}$ (1)
Q. 12 (a) incomplete p sub-shell/ outer electron configuration $s^{2} p^{5} /$ outer electrons in p subshell/ outer electrons in p orbitals/ valence electrons in p subshell/ valence electrons in p orbital
(b) (i) gaining one electron completes shell/ gives $\mathrm{p}^{6 /}$ takes an electron from another species/gains an electron

- do not accept 'attracts an electron'
(ii) fluorine because it is the smallest/ has the greatest electron affinity/ has the least shielding/ has the greatest effective nuclear charge/ oxidising power decreases as the group is descended
(c) oxidation state is $(+) 5 / \mathrm{V}$ - do not accept '5+'
(d) (i) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{\bullet} \quad$ - ignore hf
(ii) $\mathrm{CH}_{4}+\mathrm{Cl}^{\bullet} \rightarrow \mathrm{HCl}+{ }^{\bullet} \mathrm{CH}_{3}(1)$

$$
\begin{equation*}
{ }^{\bullet} \mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{\bullet} \text { (1) } \tag{2}
\end{equation*}
$$

(e) products: ${ }^{\bullet} \mathrm{CFH}_{2}$ and $\mathrm{Cl}^{\bullet}(1)$

C-CI bond is the weakest/ most easily broken (1)

